"Trigonometry on triangles, including sine/cosine rules and area of a triangle and exact values for

Question 1

Skill involved: E465: Sine rule (Law of Sines) and cosine rule (Law of Cosines) to determine lengths in a non-right angled triangle

Work out the length of *BC*.

Give your answer to 2 decimal places.

..... cm

Question 2

Skill involved: E465: Sine rule (Law of Sines) and cosine rule (Law of Cosines) to determine lengths in a non-right angled triangle

Work out the length of *AC*.

Give your answer to 2 decimal places.

..... cm

Question 3

Skill involved: E467: Area of a triangle using two lengths and the angle between them

Find the area of the triangle *ABC*, giving your answer correct to 2 decimal places.

..... cm^2

Question 4

Skill involved: E466: Sine rule (Law of Sines) and cosine rule (Law of Cosines) to determine angles in a non-right angled triangle

Find the size of the angle marked x in the triangle drawn below.

Give your answer correct to 1 decimal place.

.....

Question 5

Skill involved: 465b: Use the cosine rule/Law of Cosines to determine unknown sides in non right-angled triangles.

The diagram shows triangle ABC, with AC = 14 cm, BC = 10 cm and angle $ABC = 63^{\circ}$.

Find the length of AB.

..... cm

(2 marks)

Question 6

Skill involved: 465b: Use the cosine rule/Law of Cosines to determine unknown sides in non right-angled triangles.

The diagram shows triangle ABC, with AC = 8 cm and angle CAB = 30° .

The area of the triangle is 20 cm^2 and AB = 10 cm.

Find the length of BC, giving your answer correct to 3 significant figures.

..... cm

(2 marks)

Question 7

Skill involved: 321t: DELETED MOVE CODE Use trigonometry to determine a length in a bearings problem involving a right-angled triangle.

..... km

(2 marks)

Question 8

Skill involved: 466a: Use the sine rule/Law of Sines to determine acute angles in non right-angled triangles.

The diagram shows a triangle ABC with AC = 6 cm, BC = 8 cm, angle BAC = 60° and angle ABC = γ . Find the exact value of sin γ , simplifying your answer.

.....

(3 marks)

Mark scheme

Question 1

6.09cm

Question 2

6.57cm

Question 3

 $139.09 cm^2$

Question 4

106.6 $^{\circ}$

Question 5

15.3cm

$\label{eq:c2} \begin{split} c^2 &= 10^2 + 14^2 - 2x10x14x\cos{77.5^\circ} \\ c &= 15.3 \end{split}$	M1	Attempt use of correct cosine rule, or equiv, inc attempt at 77.5°
	Al	Obtain 15.3, or better

Question 6

5.04cm

$$BC^{2} = 8^{2} + 10^{2} - 2 \times 8 \times 10 \times \cos 30$$
M1
Attempt to use correct cosine rule,
using their AB
A1
Obtain 5.04, or better

Question 7

1.29km

$d = 2 \times \sin 40^{\circ}$ $= 1.29 \text{ km}$	M1	Attempt perpendicular distance	
	A1	Obtain 1.29, or better	
Question 8			
$\frac{3\sqrt{3}}{8}$			
$\frac{\sin\gamma}{6} = \frac{\sin 60}{8}$	M1* A	ttempt use of correct sine rule	
N	41d* U	ise sin $60^\circ = \frac{\sqrt{3}}{2}$	
$\sin\gamma=\frac{3\sqrt{3}}{8}$	A1 0	btain sin γ as $\frac{3\sqrt{3}}{8}$	