"Trigonometry on triangles, including sine/cosine rules and area of a triangle and exact values for

Question 1

Skill involved: E465: Sine rule (Law of Sines) and cosine rule (Law of Cosines) to determine lengths in a non-right angled triangle

Work out the length of $B C$.

Give your answer to 2 decimal places.

Question 2

Skill involved: E465: Sine rule (Law of Sines) and cosine rule (Law of Cosines) to determine lengths in a non-right angled triangle

Work out the length of $A C$.

Give your answer to 2 decimal places.

Question 3

Skill involved: E467: Area of a triangle using two lengths and the angle between them
Find the area of the triangle $A B C$, giving your answer correct to 2 decimal places.

Question 4

Skill involved: E466: Sine rule (Law of Sines) and cosine rule (Law of Cosines) to determine angles in a non-right angled triangle

Find the size of the angle marked x in the triangle drawn below.
Give your answer correct to 1 decimal place.

Question 5

Skill involved: 465b: Use the cosine rule/Law of Cosines to determine unknown sides in non right-angled triangles.

The diagram shows triangle $A B C$, with $A C=14 \mathrm{~cm}, B C=10 \mathrm{~cm}$ and angle $A B C=63^{\circ}$.
Find the length of $A B$.
\qquad cm

Question 6

Skill involved: 465b: Use the cosine rule/Law of Cosines to determine unknown sides in non right-angled triangles.

The diagram shows triangle $A B C$, with $A C=8 \mathrm{~cm}$ and angle $\mathrm{CAB}=30^{\circ}$.
The area of the triangle is $20 \mathrm{~cm}^{2}$ and $\mathrm{AB}=10 \mathrm{~cm}$.
Find the length of BC , giving your answer correct to 3 significant figures.

Question 7

Skill involved: 321t: DELETED MOVE CODE Use trigonometry to determine a length in a bearings problem involving a right-angled triangle.

The diagram shows two points A and B on a straight coastline, with A being 2.4 km due north of B. A stationary ship is at point C, on a bearing of 040° and at a distance of 2 km from B .

It can be shown that $\mathrm{AC}=1.55 \mathrm{~km}$, correct to 3 significant figures.
Find the shortest distance from the ship to the coastline.
\qquad
(2 marks)

Question 8

Skill involved: 466a: Use the sine rule/Law of Sines to determine acute angles in non right-angled triangles.

The diagram shows a triangle ABC with $\mathrm{AC}=6 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}$, angle $\mathrm{BAC}=60^{\circ}$ and angle $\mathrm{ABC}=\gamma$. Find the exact value of $\sin \gamma$, simplifying your answer.

Mark scheme

Question 1

6.09 cm

Question 2

6.57 cm

Question 3

$139.09 \mathrm{~cm}^{2}$

Question 4

106.6°

Question 5

15.3 cm

$c^{2}=10^{2}+14^{2}-2 \times 10 \times 14 \times \cos 77.5^{\circ}$	M1	Attempt use of correct cosine rule, or equiv, inc attempt at 77.5°

Question 6

5.04 cm
$B C^{2}=8^{2}+10^{2}-2 \times 8 \times 10 \times \cos 30$
$B C=5.04$

M1 Attempt to use correct cosine rule,

Al
using their $A B$

Obtain 5.04 , or better

Question 7

1.29 km

$d=2 \times \sin 40^{\circ}$ $=1.29 \mathrm{~km}$	M1	Attempt perpendicular distance
	A1	Obtain 1.29, or better

Question 8

$\frac{3 \sqrt{3}}{8}$
$\frac{\sin \gamma}{6}=\frac{\sin 60}{8}$
$\sin \gamma=\frac{3 \sqrt{3}}{8}$

M1*	Attempt use of correct sine rule
M1d*	Use $\sin 60^{\circ}={ }^{\sqrt{3}} / 2$
A1	Obtain $\sin \gamma$ as $\frac{3 \sqrt{3}}{8}$

