<u>Mixed Exercise</u>

- **11 a** Find the value of $35x^2 + 2x 48$ when x = 25.
 - **b** By factorising the expression, show that your answer to part **a** can be written as the product of two prime factors.
- 12 Expand and simplify if possible:
 - **a** $\sqrt{2}(3+\sqrt{5})$ **b** $(2-\sqrt{5})(5+\sqrt{3})$ **c** $(6-\sqrt{2})(4-\sqrt{7})$
- 13 Rationalise the denominator and simplify:
 - **a** $\frac{1}{\sqrt{3}}$ **b** $\frac{1}{\sqrt{2}-1}$ **c** $\frac{3}{\sqrt{3}-2}$ **d** $\frac{\sqrt{23}-\sqrt{37}}{\sqrt{23}+\sqrt{37}}$ **e** $\frac{1}{(2+\sqrt{3})^2}$ **f** $\frac{1}{(4-\sqrt{7})^2}$
- 14 a Given that $x^3 x^2 17x 15 = (x + 3)(x^2 + bx + c)$, where b and c are constants, work out the values of b and c.
 - **b** Hence, fully factorise $x^3 x^2 17x 15$.

(E) 15 Given that $y = \frac{1}{64}x^3$ express each of the following in the form kx^n , where k and n are constants. **a** $y^{\frac{1}{3}}$ **b** $4y^{-1}$ (1 mark)

- **E/P** 16 Show that $\frac{5}{\sqrt{75} \sqrt{50}}$ can be written in the form $\sqrt{a} + \sqrt{b}$, where *a* and *b* are integers. (5 marks)
 - (2 marks) Expand and simplify $(\sqrt{11} 5)(5 \sqrt{11})$.
- (E) 18 Factorise completely $x 64x^3$. (3 marks)
- (E/P) 19 Express 27^{2x+1} in the form 3^{y} , stating y in terms of x. (2 marks)
- **E/P** 20 Solve the equation $8 + x\sqrt{12} = \frac{8x}{\sqrt{3}}$ Give your answer in the form $a\sqrt{b}$ where a and b are integers. (4 marks)
- P 21 A rectangle has a length of $(1 + \sqrt{3})$ cm and area of $\sqrt{12}$ cm². Calculate the width of the rectangle in cm. Express your answer in the form $a + b\sqrt{3}$, where a and b are integers to be found.

E 22 Show that
$$\frac{(2-\sqrt{x})^2}{\sqrt{x}}$$
 can be written as $4x^{-\frac{1}{2}} - 4 + x^{\frac{1}{2}}$. (2 marks)

- **E/P** 23 Given that $243\sqrt{3} = 3^a$, find the value of *a*. (3 marks) $4x^3 + x^{\frac{4}{3}}$
- (E/P) 24 Given that $\frac{4x^3 + x^{\frac{3}{2}}}{\sqrt{x}}$ can be written in the form $4x^a + x^b$, write down the value of *a* and the value of *b*. (2 marks)

Answers

11	a	21877
	b	(5x+6)(7x-8)
		When $x = 25$, $5x + 6 = 131$ and $7x - 8 = 167$; both
		131 and 167 are prime numbers.
12		$3\sqrt{2} + \sqrt{10}$ b $10 + 2\sqrt{3} - 5\sqrt{5} - \sqrt{15}$
	с	$24 - 6\sqrt{7} - 4\sqrt{2} + \sqrt{14}$
13		$\frac{\sqrt{3}}{3}$ b $\sqrt{2} + 1$ c $-3\sqrt{3} - 6$
	d	$\frac{30 - \sqrt{851}}{-7} \qquad \mathbf{e} 7 - 4\sqrt{3} \qquad \mathbf{f} \frac{23 + 8\sqrt{7}}{81}$
14	a	b = -4 and $c = -5$ b $(x + 3)(x - 5)(x + 1)$
15	a	$\frac{1}{4}x$ b $256x^{-3}$
16	$\sqrt{7}$	$\frac{5}{\sqrt{5} - \sqrt{50}} = \frac{1}{\sqrt{3} - \sqrt{2}} = \sqrt{3} + \sqrt{2}$
17	-3	$36 + 10\sqrt{11}$
18	x((1 + 8x)(1 - 8x)
19	<i>y</i> =	= 6x + 3
20	4	3
21	3 -	$-\sqrt{3}$ cm
		$\frac{-4x^{\frac{1}{2}} + x^{1}}{x^{\frac{1}{2}}} = 4x^{-\frac{1}{2}} - 4 + x^{\frac{1}{2}}$
23	$\frac{11}{2}$	
24	4 <i>x</i>	$x^{\frac{5}{2}} + x^2, a = \frac{5}{2}b = 2$