Mixed Exercise

11 a Find the value of $35 x^{2}+2 x-48$ when $x=25$.
b By factorising the expression, show that your answer to part a can be written as the product of two prime factors.

12 Expand and simplify if possible:
a $\sqrt{2}(3+\sqrt{5})$
b $(2-\sqrt{5})(5+\sqrt{3})$ c $(6-\sqrt{2})(4-\sqrt{7})$

13 Rationalise the denominator and simplify:
a $\frac{1}{\sqrt{3}}$
b $\frac{1}{\sqrt{2}-1}$
c $\frac{3}{\sqrt{3}-2}$
d $\frac{\sqrt{23}-\sqrt{37}}{\sqrt{23}+\sqrt{37}}$
$\mathrm{e} \frac{1}{(2+\sqrt{3})^{2}}$
f $\frac{1}{(4-\sqrt{7})^{2}}$

14 a Given that $x^{3}-x^{2}-17 x-15=(x+3)\left(x^{2}+b x+c\right)$, where b and c are constants, work out the values of b and c.
b Hence, fully factorise $x^{3}-x^{2}-17 x-15$.
(E) 15 Given that $y=\frac{1}{64} x^{3}$ express each of the following in the form $k x^{n}$, where k and n are constants.
a $y^{\frac{1}{3}}$
b $4 y^{-1}$
(E/P) 16 Show that $\frac{5}{\sqrt{75}-\sqrt{50}}$ can be written in the form $\sqrt{a}+\sqrt{b}$, where a and b are integers. (5 marks)
(E) 17 Expand and simplify $(\sqrt{11}-5)(5-\sqrt{11})$.
(E) 18 Factorise completely $x-64 x^{3}$.
(E/P) 19 Express $27^{2 x+1}$ in the form 3^{y}, stating y in terms of x.
(E/P) 20 Solve the equation $8+x \sqrt{12}=\frac{8 x}{\sqrt{3}}$
Give your answer in the form $a \sqrt{b}$ where a and b are integers.
(4 marks)
(P) 21 A rectangle has a length of $(1+\sqrt{3}) \mathrm{cm}$ and area of $\sqrt{12} \mathrm{~cm}^{2}$.

Calculate the width of the rectangle in cm .
Express your answer in the form $a+b \sqrt{3}$, where a and b are integers to be found.
(E) 22 Show that $\frac{(2-\sqrt{x})^{2}}{\sqrt{x}}$ can be written as $4 x^{-\frac{1}{2}}-4+x^{\frac{1}{2}}$.
(2 marks)
(E/P) 23 Given that $243 \sqrt{3}=3^{a}$, find the value of a.
(3 marks)
(E/P) 24 Given that $\frac{4 x^{3}+x^{\frac{2}{2}}}{\sqrt{x}}$ can be written in the form $4 x^{a}+x^{b}$, write down the value of a and the value of b.
(2 marks)

Answers

11 a 21877

$$
\text { b }(5 x+6)(7 x-8)
$$

When $x=25,5 x+6=131$ and $7 x-8=167$; both 131 and 167 are prime numbers.
12 a $3 \sqrt{2}+\sqrt{10}$
b $10+2 \sqrt{3}-5 \sqrt{5}-\sqrt{15}$
c $24-6 \sqrt{7}-4 \sqrt{2}+\sqrt{14}$

13 a $\frac{\sqrt{3}}{3}$
b $\sqrt{2}+1$
c $-3 \sqrt{3}-6$
d $\frac{30-\sqrt{851}}{-7}$
e $7-4 \sqrt{3}$
f $\frac{23+8 \sqrt{7}}{81}$
14 a $b=-4$ and $c=-5$
b $(x+3)(x-5)(x+1)$
15 a $\frac{1}{4} x \quad$ b $256 x^{-3}$
$16 \frac{5}{\sqrt{75}-\sqrt{50}}=\frac{1}{\sqrt{3}-\sqrt{2}}=\sqrt{3}+\sqrt{2}$
$17-36+10 \sqrt{11}$
$18 x(1+8 x)(1-8 x)$
$19 y=6 x+3$
$204 \sqrt{3}$
$213-\sqrt{3} \mathrm{~cm}$
$22 \frac{4-4 x^{\frac{1}{2}}+x^{1}}{x^{\frac{1}{2}}}=4 x^{-\frac{1}{2}}-4+x^{\frac{1}{2}}$
$23 \frac{11}{2}$
$244 x^{\frac{5}{2}}+x^{2}, a=\frac{5}{2} b=2$

