## Further Maths Extension

1) [MAT 2002 1B]

Of the following three alleged algebraic identities, at least one is wrong.
(i) $y z(z-y)+z x(x-z)+x y(y-x)$
$=(z-y)(x-z)(y-x)$
(ii) $y z(z-y)+z x(x-z)+x y(y-x)$
$=(z-y)(z-x)(y-x)$
(iii) $y z(x+y)+z x(z+x)+x y(y+x)$

$$
=(z+y)(z+x)(y+x)
$$

Which of the following statements are correct? Tick all that apply.
(i)
$\square$ (ii)
$\square$ (iii)
2)
[MAT 2007 1E]
If $x$ and $n$ are integers then

$$
(1-x)^{n}(2-x)^{2 n}(3-x)^{3 n}(4-x)^{4 n}(5-x)^{5 n}
$$

is:
negative when $n>5$ and $x<5$
negative when $n$ is odd and $x>5$

- negative when $n$ is a multiple of 3 and $x>5$
negative when $n$ is even and $x<5$

3) $[$ MAT 20071 A$]$

Let $r$ and $s$ be integers. Then

$$
\frac{6^{r+s} \times 12^{r-s}}{8^{r} \times 9^{r+2 s}}
$$

is an integer if
$r+s \leq 0$

- $s \leq 0$
$r \leq 0$
- $r \geq s$


## Further Maths Extension

[MAT 2002 1B]
Of the following three alleged algebraic identities, at least one is wrong

$$
\begin{gathered}
\text { (i) } y z(z-y)+z x(x-z)+x y(y-x) \\
=(z-y)(x-z)(y-x) \\
\text { (ii) } y z(z-y)+z x(x-z)+x y(y-x) \\
=(z-y)(z-x)(y-x) \\
\text { (iii) } y z(x+y)+z x(z+x)+x y(y+x) \\
=(z+y)(z+x)(y+x)
\end{gathered}
$$

Which of the following statements are correct? Tick all that apply.
$\square$ (i)
$\square$ (ii)
$\square$ (iii)
[MAT 2007 1E]
If $x$ and $n$ are integers then
$(1-x)^{n}(2-x)^{2 n}(3-x)^{3 n}(4-x)^{4 n}(5-x)^{5 n}$
Solution: $\boldsymbol{n}$ is odd and $\boldsymbol{x}>5$

- negative when $n>5$ and $x<5$
- negative when $n$ is odd and $x>5$
- negative when $n$ is a multiple of 3 and $x>5$
- negative when $n$ is even and $x<5$


## Solution: (ii) only

[MAT 2007 1A]
Let $r$ and $s$ be integers. Then

$$
\frac{6^{r+s} \times 12^{r-s}}{8^{r} \times 9^{r+2 s}}
$$

is an integer if

$$
\begin{aligned}
& =\frac{2^{r+s} \times 3^{r+s} \times 2^{2 r-2 s} \times 3^{r-s}}{2^{3 r} \times 3^{2 r+4 s}} \\
& =2^{-s} \times 3^{-4 s}
\end{aligned}
$$

This is an integer only if $\boldsymbol{s} \leq \mathbf{0}$.
$r+s \leq 0$

- $s \leq 0$
- $r \leq 0$
- $r \geq s$


## Note that:

$10-3 \sqrt{11}=\sqrt{100}-\sqrt{99}$

- $10-3 \sqrt{11}$
- $8-3 \sqrt{7}$
- $5-2 \sqrt{6}$
- $9-4 \sqrt{5}$
- $7-4 \sqrt{3}$

The other options can similarly be written as $\sqrt{n+1}-\sqrt{n}$. The greater the $n$, the smaller the number, so the answer is $10-3 \sqrt{11}$.

